import random def generate_comparison_data(num_points=10): # ================= 1. 初始状态与运动趋势 (真值配置) ================= # 距离 (km): 模拟目标从 12.5km 处靠近 (参考文件中远距离测试) start_dist = 12.500 dist_speed = -0.020 # 负数表示靠近 (每点移动20米) # 方位 (度): 模拟目标在 145度 方向缓慢右移 start_az = 145.20 az_speed = 0.05 # 缓慢变化 # 俯仰 (度): 模拟低空飞行,角度很小 start_el = 0.45 el_speed = 0.002 # 几乎平飞 # ================= 2. 雷达测量误差 (噪声配置) ================= # 参考依据:文件中的RMS指标 (方位<=0.3度, 距离<=15m) # 这里的 sigma 是标准差,决定了测量值的抖动幅度 sigma_az = 0.12 # 方位抖动 (度) sigma_el = 0.15 # 俯仰抖动 (度) sigma_dist = 0.008 # 距离抖动 (km), 0.008km = 8米 # ================= 生成逻辑 ================= # 容器 truth_az, truth_el, truth_dist = [], [], [] meas_az, meas_el, meas_dist = [], [], [] current_d = start_dist current_a = start_az current_e = start_el for _ in range(num_points): # --- A. 生成真值 (平滑运动 + 极微小物理抖动) --- t_d = current_d + random.gauss(0, 0.001) t_a = current_a + random.gauss(0, 0.01) t_e = current_e + random.gauss(0, 0.005) # 存入真值列表 (保留格式) truth_dist.append(f"{t_d:.3f}") truth_az.append(f"{t_a:.2f}") truth_el.append(f"{t_e:.2f}") # --- B. 生成测量值 (真值 + 传感器噪声) --- m_d = t_d + random.gauss(0, sigma_dist) m_a = t_a + random.gauss(0, sigma_az) m_e = t_e + random.gauss(0, sigma_el) # 存入测量值列表 meas_dist.append(f"{m_d:.3f}") meas_az.append(f"{m_a:.2f}") meas_el.append(f"{m_e:.2f}") # 更新下一步的基准位置 current_d += dist_speed current_a += az_speed current_e += el_speed # ================= 3. 格式化输出 (方便复制) ================= print("\n" + "="*40) print("【第一部分:真值数据 (Truth)】") print("="*40) print("方位(°)\t" + "\t".join(truth_az)) print("俯仰(°)\t" + "\t".join(truth_el)) print("距离(km)\t" + "\t".join(truth_dist)) print("\n" + "="*40) print("【第二部分:测量结果 (Measured)】") print("="*40) print("方位(°)\t" + "\t".join(meas_az)) print("俯仰(°)\t" + "\t".join(meas_el)) print("距离(km)\t" + "\t".join(meas_dist)) print("="*40 + "\n") if __name__ == "__main__": generate_comparison_data()