更新 generate_radar_data.py
This commit is contained in:
@@ -1,77 +1,53 @@
|
||||
import random
|
||||
|
||||
def generate_comparison_data(num_points=10):
|
||||
# ================= 1. 初始状态与运动趋势 (真值配置) =================
|
||||
# 距离 (km): 模拟目标从 12.5km 处靠近 (参考文件中远距离测试)
|
||||
start_dist = 12.500
|
||||
dist_speed = -0.020 # 负数表示靠近 (每点移动20米)
|
||||
|
||||
# 方位 (度): 模拟目标在 145度 方向缓慢右移
|
||||
start_az = 145.20
|
||||
az_speed = 0.05 # 缓慢变化
|
||||
|
||||
# 俯仰 (度): 模拟低空飞行,角度很小
|
||||
start_el = 0.45
|
||||
el_speed = 0.002 # 几乎平飞
|
||||
|
||||
# ================= 2. 雷达测量误差 (噪声配置) =================
|
||||
# 参考依据:文件中的RMS指标 (方位<=0.3度, 距离<=15m)
|
||||
# 这里的 sigma 是标准差,决定了测量值的抖动幅度
|
||||
sigma_az = 0.12 # 方位抖动 (度)
|
||||
sigma_el = 0.15 # 俯仰抖动 (度)
|
||||
sigma_dist = 0.008 # 距离抖动 (km), 0.008km = 8米
|
||||
|
||||
# ================= 生成逻辑 =================
|
||||
|
||||
# 容器
|
||||
truth_az, truth_el, truth_dist = [], [], []
|
||||
meas_az, meas_el, meas_dist = [], [], []
|
||||
|
||||
current_d = start_dist
|
||||
current_a = start_az
|
||||
current_e = start_el
|
||||
|
||||
for _ in range(num_points):
|
||||
# --- A. 生成真值 (平滑运动 + 极微小物理抖动) ---
|
||||
t_d = current_d + random.gauss(0, 0.001)
|
||||
t_a = current_a + random.gauss(0, 0.01)
|
||||
t_e = current_e + random.gauss(0, 0.005)
|
||||
|
||||
# 存入真值列表 (保留格式)
|
||||
truth_dist.append(f"{t_d:.3f}")
|
||||
truth_az.append(f"{t_a:.2f}")
|
||||
truth_el.append(f"{t_e:.2f}")
|
||||
|
||||
# --- B. 生成测量值 (真值 + 传感器噪声) ---
|
||||
m_d = t_d + random.gauss(0, sigma_dist)
|
||||
m_a = t_a + random.gauss(0, sigma_az)
|
||||
m_e = t_e + random.gauss(0, sigma_el)
|
||||
|
||||
# 存入测量值列表
|
||||
meas_dist.append(f"{m_d:.3f}")
|
||||
meas_az.append(f"{m_a:.2f}")
|
||||
meas_el.append(f"{m_e:.2f}")
|
||||
|
||||
# 更新下一步的基准位置
|
||||
current_d += dist_speed
|
||||
current_a += az_speed
|
||||
current_e += el_speed
|
||||
|
||||
# ================= 3. 格式化输出 (方便复制) =================
|
||||
print("\n" + "="*40)
|
||||
print("【第一部分:真值数据 (Truth)】")
|
||||
print("="*40)
|
||||
print("方位(°)\t" + "\t".join(truth_az))
|
||||
print("俯仰(°)\t" + "\t".join(truth_el))
|
||||
print("距离(km)\t" + "\t".join(truth_dist))
|
||||
|
||||
print("\n" + "="*40)
|
||||
print("【第二部分:测量结果 (Measured)】")
|
||||
print("="*40)
|
||||
print("方位(°)\t" + "\t".join(meas_az))
|
||||
print("俯仰(°)\t" + "\t".join(meas_el))
|
||||
print("距离(km)\t" + "\t".join(meas_dist))
|
||||
print("="*40 + "\n")
|
||||
|
||||
if __name__ == "__main__":
|
||||
generate_comparison_data()
|
||||
import random
|
||||
import csv
|
||||
import math
|
||||
|
||||
def generate_radar_test_data(filename="Radar_Accuracy_Test_Data.csv"):
|
||||
# ================= 1. 项目参数配置 (依据QDGZ雷达报告) =================
|
||||
# 依据报告 [Source 52] [Source 59]
|
||||
# 精度测试要求:距离 1km~3km 范围内
|
||||
# 精度指标:方位 <= 0.6°, 俯仰 <= 0.6°, 距离 <= 10m
|
||||
|
||||
# --- 初始真值设定 ---
|
||||
# 模拟目标:无人机 (RCS 0.01m2)
|
||||
start_dist_km = 2.500 # 起始距离 2.5km (符合1-3km测试区间)
|
||||
# 速度:模拟 V ≈ 10m/s (0.01 km/s)
|
||||
speed_km_s = -0.010 # 负数表示靠近雷达
|
||||
time_interval_s = 2.0 # 两次采样间隔 (模拟数据率)
|
||||
|
||||
start_az = 45.50 # 初始方位
|
||||
az_rate = 0.05 # 方位角变化率 (度/次)
|
||||
|
||||
start_el = 2.50 # 初始俯仰 (低空目标)
|
||||
el_rate = 0.01 # 俯仰角变化率
|
||||
|
||||
num_points = 10 # 对应表A.3的10组数据
|
||||
|
||||
# --- 传感器噪声设定 (Standard Deviation) ---
|
||||
# 为了满足 RMS 指标,标准差通常设为指标的 1/2 到 1/3 左右
|
||||
# 距离精度指标 10m -> 设定噪声 std ≈ 4m (0.004km)
|
||||
sigma_dist_km = 0.004
|
||||
# 角度精度指标 0.6° -> 设定噪声 std ≈ 0.2°
|
||||
sigma_angle = 0.2
|
||||
|
||||
# ================= 2. 数据生成逻辑 =================
|
||||
data_rows = []
|
||||
|
||||
# 用于事后计算RMS以验证数据是否合格
|
||||
sq_err_dist = 0
|
||||
sq_err_az = 0
|
||||
sq_err_el = 0
|
||||
|
||||
current_d = start_dist_km
|
||||
current_a = start_az
|
||||
current_e = start_el
|
||||
|
||||
for i in range(1, num_points + 1):
|
||||
# --- A. 生成真值 (平滑运动轨迹) ---
|
||||
# 加入极微小的物理抖动(模拟真实飞行的不绝对平滑)
|
||||
t_d = current_d + random.gauss(0, 0.0005)
|
||||
t_a = current_a + random.gauss(0, 0.005)
|
||||
t_e = current_e + random.gauss(0, 0.005)
|
||||
|
||||
# --- B. 生成雷达测量值 (真值 + 传感器高斯噪声) ---
|
||||
m_d = t_d + random.gauss(0, sigma_dist_km)
|
||||
Reference in New Issue
Block a user